Lecture Guide

Math 105 - College Algebra Chapter 8

to accompany

"College Algebra" by Julie Miller

Corresponding Lecture Videos can be found at

Prepared by

Stephen Toner & Nichole DuBal Victor Valley College

Last updated: 5/10/13

8.1 & 8.2 - Sequences and Series

Notation: $11, 14, 17, 20, 23, \dots, 3n + 8$,

In exercises 10-12, the *n*th term of a sequence is given. Write the first four terms of the sequence.

8.1 #10
$$b_n = -n^3 + 5$$

8.1 #12
$$d_n = 64 \left(-\frac{1}{4}\right)^n$$

8.1 #22 The *n*th term of a sequence is given. Find the indicated term.

$$d_n = 6n + 7$$
; find d_{204}

With <u>recursive</u> sequences, rather than finding the n^{th} term by substituting in values for n, we find each term based on the terms before it.

8.1 #30 Write the first five terms of the sequence defined recursively.

$$d_1 = 30; d_n = \frac{1}{3}d_{n-1} - 1$$

Write the first five terms of the sequence defined recursively. $\begin{cases} a_1=7\\ a_n=10-a_{n-1} \end{cases}$

Write the first five terms of the sequence defined recursively. $\begin{cases} a_1=1\\ a_2=1\\ a_n=a_{n-1}+a_{n-2} \end{cases}$

This is known as the Fibonacci sequence.

Factorial Notation:

Definition:
$$n! = n(n-1)(n-2) \cdots 1$$

8.1 #42 Evaluate:
$$\frac{10!}{6! \cdot 4!}$$

8.1 #44 Evaluate:
$$\frac{(n-2)!}{n!}$$

Summation (Sigma) Notation:

In exercises 52-58, find the sum.

8.1 #52
$$\sum_{i=1}^{5} (2i+7)$$

8.1 #56
$$\sum_{n=2}^{4} \left(\frac{1}{3}\right)^n$$

8.1 #58
$$\sum_{i=1}^{50} 4$$

8.1 #76 Write using summation notation. There may be multiple representations. Use i as the index of summation.

$$3 + \frac{1}{2} + \frac{5}{27} + \frac{3}{32} + \dots + \frac{n+2}{n^3}$$

Arithmetic Sequences

Arithmetic sequences are sequences in which a common ______ exists between terms.

Example: 2, 4, 6, 8, ..., 200, ...

In exercises 16-18, determine whether the sequence is arithmetic. If so, find the common difference.

$$8.2 \# 16$$
 $8, 0, -8, -16, ...$

8.2 #22 Write the first five terms of an arthmetic sequence $\{a_n\}$, based on the given information about the sequence.

$$a_1 = 6; d = 5$$

Given
$$a_1 = 7$$
 and $d = 9$, find a_{48} .

8.2 #40 Find the 46th term of an arithmetic sequence with $a_1 = 210$ and $a_{60} = -262$.

8.2 #42 Find the number of terms of the finite arithmetic sequence.

For the arithmetic sequence with $a_5=47$ and $a_{11} = 113$, find a_1 .

8.2 #50 Find the sum of the first 60 terms of the sequence. $\{2, 10, 18, 26, ...\}$

Given the sequence 2, 5, 8, 11, 14, ... find the following sums:

$$S_1 =$$

$$S_2 =$$

$$S_3 =$$

$$S_4 =$$

Mini-Summary:

$$a_n = a_1 + (n-1)d$$

$$S_n = \frac{n}{2}(a_1 + a_n)$$

Substituting the first (above) into the second give the following:

$$S_n = \frac{n}{2} [2a_1 + (n-1)d]$$

8.2 #58 Find the sum. $\sum_{i=1}^{40} (3i-7)$

For the given arithmetic sequence, the 82^{nd} term, a_{82} , is equal to -370, and the 6^{th} term, a_6 , is equal to 10. Find the value of the 33rd term, a_{33} .

*Write each using sigma notation:

$$87 + 92 + 97 + 102 + 107$$

$$172 + 168 + 164 + 160 + 156 + 152 + 148$$

$$\frac{1}{8} + \frac{2}{9} + \frac{3}{10} + \frac{4}{11} + \frac{5}{12}$$

8.3 – Geometric Sequences and Series

Geometric Sequences and Series

Geometric sequences and series have a common between terms.

Formulas:
$$a_n = a_1 r^{n-1}$$

$$S_n = \frac{a_1 (1 - r^n)}{1 - r}$$

In exercises 18 and 24, determine whether the sequence is geometric. If so, determine the value of r.

8.3 #18
$$5, -\frac{5}{3}, \frac{5}{9}, -\frac{5}{27}, \dots$$

8.3 #24
$$\frac{5}{a^2}$$
, $\frac{15}{a^4}$, $\frac{45}{a^6}$, $\frac{135}{a^8}$, ...

8.3 #28 Write the first five terms of a geometric sequence $\{a_n\}$ based on the given information.

$$a_1=80$$
 and $r=-rac{4}{5}$

Find
$$a_8$$
 if $a_1 = 4$ and $r = \frac{-1}{2}$.

8.3 #36 Write a formula for the nth term of the geometric sequence.

$$\frac{18}{5}$$
, $\frac{6}{5}$, $\frac{2}{5}$, $\frac{2}{15}$, ...

8.3 #42 Find the indicated term of a geometric sequence from the given information.

$$a_1 = 16$$
 and $a_2 = -12$. Find the fifth term.

8.3 #54 Find a_1 and r for a geometric sequence $\{a_n\}$ from the given information.

$$a_3 = 45$$
 and $a_6 = -\frac{243}{25}$

Find n for the geometric sequence having $a_1=1$, $a_n=-128$ and r=-2.

For exercises 58 and 62, find the sum of the geometric series, if possible.

8.3 #58
$$\sum_{j=1}^{7} 2 \left(\frac{3}{4}\right)^{j-1}$$

8.3 #62
$$4 + 12 + 36 + \dots + 78,732$$

The sum of an infinite geometric series is given by $S_{\infty}=rac{a_1}{1-r}$, provided |r|<1.

Note that if
$$r=1$$
, $2+2+2+2+\cdots$ has no infinite sum.

We say that this series ______.

For exercises 66 and 70, find the sum of the geometric series, if possible.

8.3 #66
$$1 + \frac{1}{6} + \frac{1}{36} + \frac{1}{216} + \cdots$$

8.3 #70
$$1+6+36+216+\cdots$$

8.3 #80 Write the repeating decimal $0.7\overline{8}$ as a fraction.

Review of sections 8.1 - 8.3

1. Given
$$a_1 = 62$$
, and $d = 7$, find a_{43} and S_{102} .

2. Find the first four terms of this recursive

sequence:
$$\begin{cases} a_1 = 17 \\ a_n = 2a_{n-1} + 5 \end{cases}$$

3. Write each of the following using sigma notation:

a.
$$131 + 122 + 113 + 104 + 95 + 86$$

b.
$$1 + 8 + 27 + 64 + 125$$

c.
$$40 + 20 + 10 + 5 + \frac{5}{2} + \frac{5}{4} + \frac{5}{8}$$

d.
$$\frac{17}{53} + \frac{19}{50} + \frac{21}{47} + \frac{23}{44} + \frac{25}{41}$$

4. Find both a recursive formula and a general formula for each sequence:

6. Find the sum of the first one hundred even numbers.

5. Find a_1 for the arithmetic sequence with

 $a_{43} = 218$ and $a_{51} = 507$.

8.4 - Proof by Induction

Principle of Mathematical Induction

Let S_n be a statement involving the positive integer n, and let k be an arbitrary positive integer. Then S_n is true for all positive integers n if

- 1. S_1 is true, and
- 2. The truth of S_k implies the truth of S_{k+1} .

Steps:

- 1. Show that the statement is true for n=1.
- 2. Assume the statement is true for n=k.
- 3. Show that the statement is true for n=k+1.

8.4 #8 Use mathematical induction to prove the given statement for all posible integers n.

$$2 + 8 + 14 + \dots + (6n - 4) = n(3n - 1)$$

8.4 #11 Use mathematical induction to prove the given statement for all posible integers n.

$$8 + 4 + 0 + \dots + (-4n + 12) = -2n(n - 5)$$

Prove: $4 + 12 + 20 + \dots + (8n - 4) = 4n^2$

8.5 – The Binomial Theorem

Pascal's Triangle:

$$(a + b)^0 =$$

$$(a+b)^1$$
=

$$(a + b)^2 =$$

$$(a + b)^3 =$$

8.5 #18b Write the expansion of $(c-d)^3$.

$$(2x - 3y)^5 =$$

Coefficients of a Binomial Expansion

Let n and r be nonnegative integers with $n \ge r$. The expression $\binom{n}{r}$ (read as "n choose r") is called a binomial coefficient and is defined by

$$\binom{n}{r} = \frac{n!}{r!(n-r)!}$$

Note: The notation ${}_{n}C_{r}$ is often used in place of $\binom{n}{r}$.

Evaluate: $\binom{52}{5} =$

Calculator keystrokes:

8.5 #20 Evaluate the given expression. Compare the result to the sixth row of Pascal's traingle.

- a. $\binom{5}{0}$
- b. $\binom{5}{1}$
- c. $\binom{5}{2}$
- $d. \binom{5}{3}$
- e. $\binom{5}{4}$
- f. $\binom{5}{5}$

The Binomial Theorem

Let n be a positive integer. The expansion of $(a + b)^n$ is given by

$$(a+b)^{n} = \binom{n}{0}a^{n} + \binom{n}{1}a^{n-1}b + \binom{n}{2}a^{n-2}b^{2} + \dots + \binom{n}{n-1}ab^{n-1} + \binom{n}{n}b^{n}$$
$$= \sum_{r=0}^{n} \binom{n}{r}a^{n-r}b^{r}$$

8.5 #26 Expand using the binomial theorem.

$$(5x + 3)^5$$

8.5 #32 Expand using the binomial theorem.

$$(3y^2-z)^5$$

kth Term of a Binomial Expansion

Let *n* and *k* be positive integers with $k \le n + 1$. The *k*th term of $(a + b)^n$ is $\binom{n}{k-1} a^{n-(k-1)} b^{k-1}$

8.5 #44 Find the indicated term of the binomial expansion.

 $(y^3 + 2z^2)^{14}$; tenth term

8.5 #50 Find the indicated term of the binomial expansion.

 $(a^3 + 4b)^6$ Find the term containing a^9 .

Chapter 8 Review

1. Expand: $(2x - 3y)^6$

n(3n-1)

3. Prove by induction:

$$1 + 4 + 7 + \dots + (3n - 2) = \frac{n(3n - 1)}{2}$$

2. Find the coefficient of the x^5y^{12} term of $(2x + y)^{17}$.

4. Find the sum:
$$40 + 30 + \frac{45}{2} + \frac{135}{8} + \cdots$$

7. Add to 117 terms: $18 + 23 + 28 + \cdots$

5. Find S_8 when $a_1=4$ and $r=\frac{1}{4}$.

- 8. Given $a_{41}=113$ and $a_{75}=305$, find a_{211} for this arithmetic sequence.
- 6. Write each of the following using sigma notation:

a.
$$117 + 115 + 113 + 111 + 109$$

b. 60 + 30 + 15 + 7.5 + 3.75

9. For the arithmetic sequence with $a_5=32$ and $a_9=70$, find a_1 .

<u>Final Exam Review</u>

1. Solve: $x^2 - 12 \ge x$

2. Find the balance of an account after 5 years if \$3600 is invested at 4.5%, compounded monthly.

10. Determine whether each is arithmetic or geometric. Then find a formula for the general term, a_n .

a. 5, 11, 17, 23, ...

b. 4, 12, 36, 108, ...

3. Multiply: $\begin{bmatrix} 2 & 3 & -4 \\ 5 & 1 & 1 \end{bmatrix} \begin{bmatrix} 6 & -8 \\ -1 & 3 \end{bmatrix}$

- 4. In 2004, a company had a net worth of \$43 million. In 2008, the same company had a net worth of \$62 million. Letting t=0 represent the year 2004, find a function for the worth of the company as a function of time.
- 6. Solve: $|2x + 7| 3 \ge 5$

- 5. Given $A = \begin{bmatrix} -3 & 5 \\ -1 & 4 \end{bmatrix}$, find A^{-1} , if it exists.
- 7. List the possible rational zeroes of the function $g(x) = 9x^4 + 5x^3 2x^2 + 4$

8. Name all asymptotes and intercepts of $f(x) = \frac{x-3}{2x+1}.$

9. For the rational function described in exercise 8, finish the following statements:

$$As x \to -\infty, y \to \underline{\hspace{1cm}}$$

$$As \ x \to +\infty, y \to \underline{\hspace{1cm}}$$

10. How long would it take \$1500 to double when invested at 2.2%, compounded daily?

11. Find the vertices of the polygon formed:

$$\begin{cases} x \ge 2 \\ y \ge 1 \\ y \le -x + 11 \\ y \ge x + 3 \end{cases}$$

12. Find S_{143} for the sequence $\frac{3}{5}$, $1, \frac{7}{5}, \frac{9}{5}, ...$

13. Find the domain of each:

a.
$$f(x) = \sqrt{3x - 5}$$

14. Find
$$S_5$$
 for the geometric sequence with $a_1=6$ and $r=-2$.

b.
$$g(x) = \frac{x+2}{3x-5}$$

$$4 + 4(-3) + 4(-3)^2 + 4(-3)^3 + \cdots$$

c.
$$h(x) = log_4(3x - 5)$$

$$(y+3)^2 = -12(x+2)$$

d.
$$f(x) = \sqrt{x^2 - 25}$$

- 17. The length of a rectangle is 4 cm more than its width. Find a function which represents the rectangle's area in terms of its width.
- 19. Sketch the graph of

$$y = (x + 3)^2(x - 4)(x - 1)^4$$

20. What does Descartes' Rule of Signs tell us about the possible number of positive and negative real zeroes of p(x)?

$$p(x) = 2x^7 + x^6 + x^5 - x^4 - x^3 + x^2 - x + 2$$

18. Find the foci:

$$x^2 - 4y^2 - 12x - 8y + 16 = 0.$$

21. Solve: $2^{x+3} = 17$