Lecture Guide

Math 105 - College Algebra Chapter 4

to accompany

"College Algebra" by Julie Miller

Corresponding Lecture Videos can be found at

Prepared by

Stephen Toner & Nichole DuBal Victor Valley College

Last updated: 3/23/13

4.1 - Inverse Functions

A function is

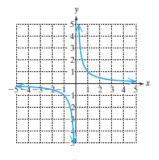
if it passes both a vertical and horizontal line test. If a function is one-to-one, then it is

_____ (it has an

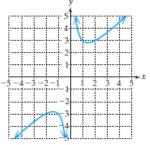
inverse which is also a function).

In exercises 22 and 24, determine if the relation defines y as a one-to-one function of x.

4.1 #22



4.1 #24



Definition of a One-to-One Function

A function f is a **one-to-one function**, if for a and b in the domain of f, if $a \neq b$, then $f(a) \neq f(b)$, or equivalently, if f(a) = f(b), then a = b.

4.1 #30 Use the definition of a one-to-one function to determine if h(x) = -3x + 2 is one-to-one.

Definition of an Inverse Function

Let f be a one-to-one function. Then g is the inverse of f if the following conditions are both true.

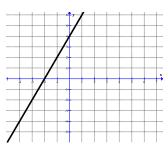
- **1.** $(f \circ g)(x) = x$ for all x in the domain of g.
- 2. $(g \circ f)(x) = x$ for all x in the domain of f.

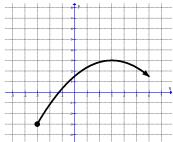
4.1 #42 Determine whether the two functions are inverses.

$$w(x) = \frac{6}{x+2}$$
 and $z(x) = \frac{6-2x}{x}$

To find the inverse of a function from its **graph**, reflect the graph across the line ______. If (a,b) is on f(x), then (b,a) is on the graph of its inverse.

*Given the graph of f(x), graph its inverse.





To find the inverse of a function from its **equation**, switch the x and y, and then solve for the "new" y.

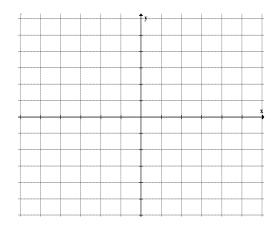
In exercises 52, a one-to-one function is given. Write an equation for the inverse function.

4.1 #52
$$m(x) = 2x^3 - 5$$

f. Explain why the restriction $x \ge 0$ is placed on f^{-1} .

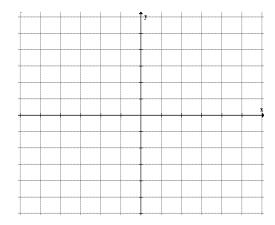
e. Write an equation for $f^{-1}(x)$.

4.1 #62 a. Graph $f(x) = \sqrt{x+2}$.



- b. From the graph of f, is f a one-to-one function?
- c. Write the domain of f in interval notation.
- d. Write the range of \boldsymbol{f} in interval notation.

g. Graph y = f(x) and $y = f^{-1}(x)$ on the same coordinate system.



- h. Write the domain of f^{-1} in interval notation.
- i. Write the range of f^{-1} in interval notation.

In exercises 56, a one-to-one function is given. Write an equation for the inverse function.

4.1 #56
$$v(x) = \frac{x-5}{x+1}$$

4.1 #66 Given f(x) = |x| - 3; $x \ge 0$, write an equation for f^{-1} . (Hint: Sketch f(x) and note the domain and range.)

4.2 & 4.3 - Exponential & Logarithmic Functions

A. Introduction

 $y = a^x$ is an exponential equation.

"a" is called the .

To emphasize how exponential equations can increase rapidly, consider the following "dream" salary schedule in which a peron starts with a 2¢ salary on the first day, and every day thereafter the salary is doubled.

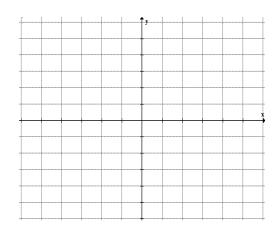
Day	Payment	Day	Payment	Day	Payment
1	2¢	11	\$20.48	21	\$20,971.52
2	4¢	12	\$40.96	22	\$41,943.04
3	8¢	13	\$81.92	23	\$83,886.08
4	16¢	14	\$163.84	24	\$167,772.16
5	32¢	15	\$327.68	25	\$335,554.32
6	64¢	16	\$655.36	26	\$671,088.64
7	\$1.28	17	\$1310.72	27	\$1,342,177.28
8	\$2.56	18	\$2621.44	28	\$2,684,354.56
9	\$5.12	19	\$5242.88	29	\$5,368,709.12
10	\$10.24	20	\$10,485.76	30	\$10,737,418.24

Avoiding Mistakes

- The base of an exponential function must not be negative to avoid situation where the function values are not real numbers. For example, $f(x) = (-4)^x$ is not defined for $x = \frac{1}{2}$ because $\sqrt{-4}$ is not a real number.
- The base of an exponential function must not equal 1 because $f(x) = 1^x = 1$ for all real numbers x. This is a constant function, not an exponential function.

B. Graphing Exponential and Log Functions

Graph: $y = 2^x$



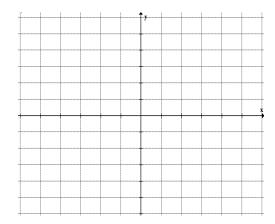
The domain is:			
	 	 	 _

The range is: ______.

Convert each from logarithmic form to exponential form (or vice versa):

Logarithmic Form	Exponential Form

Graph $y = log_2 x$



The domain is: ______.

The range is:

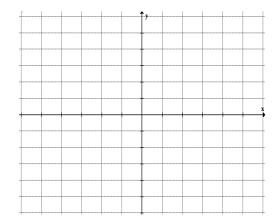
Transformations of exponential functions:

If h > 0, shift to the right. If h < 0, shift to the left.

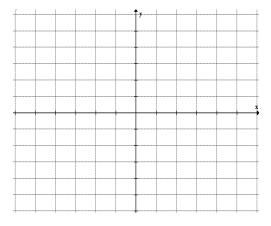
$$f(x) = ab^{x-h} + k$$

If a < 0 reflect across the x-axis. Shrink vertically if 0 < |a| < 1. Stretch vertically if |a| > 1. If k > 0, shift upward. If k < 0, shift downward.

4.2 #26 Graph the function $g(x) = 4^x$ and write the domain and range in interval notation.



4.2 #38 Use the graph of $y = 4^x$ to graph the function $q(x) = 4^{x+1} + 2$. Write the domain and range in interval notation.



Transformations of logarithmic functions:

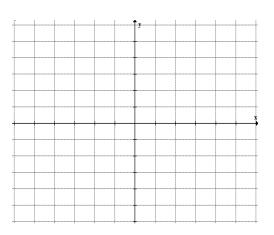
If
$$h > 0$$
, shift to the right.
If $h < 0$, shift to the left.

If k > 0, shift upward. If k < 0, shift downward.

$$f(x) = a \log_b(x - h) + k$$

If a < 0 reflect across the x-axis. Shrink vertically if 0 < |a| < 1. Stretch vertically if |a| > 1.

4.3 #80 a. Use transformations of the graph of $y = log_2x$ to graph $y = log_2(x-2) - 1$.



b. Write the domain and range in interval notation.

c. Determine the vertical asymptote.

In exercises 86 and 92, write the domain in interval notation.

4.3 #86
$$k(x) = log_3(5x + 6)$$

4.3 #90
$$q(x) = log(x^2 + 10x + 9)$$

C. Evaluating Exponential and Log Functions

Exponential keys on calculator:

Logarithmic keys on calculator:

On your calculator, find the following values:

1.
$$(3.07)^{1.42} \approx$$

3.
$$ln(317)$$
 ≈

4.
$$e^{3.78} \approx$$

In exercises 36-48, simplify the expression.

4.3 #42
$$log_3(\frac{1}{9})$$

4.3 #48
$$ln\left(\frac{1}{e^8}\right)$$

Solve each equation:

1.
$$log_x 16 = 4$$

2.
$$log_3 x = 5$$

3.
$$log_5 25 = x$$

4.3 #56 Estimate the value of each logarithm between two consecutive integers. Then use a calculator to approximate the value to 4 decimal places. For example, $\log 8970$ is between 3 and 4 because $10^3 < 8970 < 10^4$.

e.
$$\log(9.1 \times 10^8)$$

f.
$$\log(8.2 \times 10^{-2})$$

Basic Properties of Logarithms

1.
$$log_b(1) = 0$$

2.
$$log_b(b) = 1$$

$$3. \log_b(b^x) = x$$

4.
$$b^{log_b x} = x$$

In exercises 59-68, simplify the expression.

 $4.3 \# 60 \quad log_6 6^7$

4.3 #64 $4^{\log_4(a-c)}$

Compound interest: $A = P\left(1 + \frac{r}{n}\right)^{nt}$

A represents the ______.

P represents the

r represents the ______

t represents the ______.

n represents the ______.

- Use n=____ for interest compunded annually.
- Use n=____ for interest compunded semi-annually.
- Use n=____ for interest compunded quarterly.
- Use n=____ for interest compunded monthly.
- Use n=____ for interest compunded daily.

For continuously compounding interest, use the formaula $A = Pe^{rt}$.

4.2 #55 Suppose that \$10,000 is invested with4% interest for 5 yr under the following compounding options. Complete the table.

	Compounding Option	n Value	Result
а	Annually		
b	Quarterly		
С	Monthly		
d	Daily		
е	Continuously		

4.2 #66 The population of Canada in 2010 was approximately 34 million with an annual growth rate of 0.804%. At this rate, the population P(t) (in millions) can be approximated by $P(t) = 34(1.00804)^t$, where t is the time in years since 2010.

- a. Is the graph of P an increasing or decreasing exponential function?
- b. Evaluate P(0) and interpret its meaning in the context of the problem.
- c. Evaluate P(5) and interpret its meaning in the context of the problem. Round the population value to the nearest million.
- d. Evaluate P(15), P(25), and P(200).

4.4 - Properties of Logarithms

Properties of Logarithms:

- 1. log(xy) = logx + logy product propery
- 2. $log\left(\frac{x}{y}\right) = logx logy$ quotient property
- 3. $log(x^p) = p \cdot logx$ power property

4.4 #18 Use the product property of logarithms to write the logarithm as a sum of logarithms. Then simplify if possible.

$$log_7(49k)$$

4.4 #24 Use the quotient property of logarithms to write the logarithm as a sum of logarithms. Then simplify if possible.

$$log_9\left(\frac{m}{n}\right)$$

4.4 #28 Use the quotient property of logarithms to write the logarithm as a sum of logarithms. Then simplify if possible.

$$log\left(\frac{1000}{c^2+1}\right)$$

4.4 #34 Apply the power property of logarithms.

$$ln(0.5)^{rt}$$

4.4 #42 Write the logarithm as a sum or difference of logarithms. Simplify each term as much as possible.

$$\ln\left(\frac{\sqrt[4]{pq}}{t^3m}\right)$$

4.4 #62 Write the logarithmic expression as a single logarithm with coefficient 1, and simplify as much as possible.

$$15\log c - \frac{1}{4}\log d - \frac{3}{4}\log k$$

4.4 #62 Write the logarithmic expression as a single logarithm with coefficient 1, and simplify as much as possible.

$$\log(9t^3 - 5t) + \log t^{-1}$$

4.4 #74 Use $log_b 2 \approx 0.356$, $log_b 3 \approx 0.565$, and $log_b 5 \approx 0.827$ to approximate the value of the given logarithm.

$$log_b 12$$

Change-of-Base Formula

Let a and b be positive real numbers such that $a \neq 1$ and $b \neq 1$. Then for any positive real number x,

$$\log_b x = \frac{\log_a x}{\log_a b}$$

Note: The change-of-base formula converts a logarithm of one base to a ratio of logarithms of a different base. For the purpose of using a calculator, we often apply the change-of-base formula with base 10 or base e.

$$\frac{\log_b x}{\log_b b} = \frac{\log x}{\log b}$$
Ratio of base 10 logarithms losse is b.
$$\frac{\log_b x}{\log_b x} = \frac{\ln x}{\ln b}$$
Ratio of base or logarithms losse is b.

4.4 #80 a. Estimate the value of log_315 between two consecutive integers. For example, log_27 is between 2 and 3 because $2^2 < 7 < 2^3$.

b. Use the change-of-base formula and a calculator to approximate the logarithm to 4 decimal places.

c. Check the result by using the related exponential equation.

4.5 - Exponential and Logarithmic Equations

4.5 #16 Solve the equation.

$$5^{2z+2} = 625$$

4.5 #18 Solve the equation.

$$7^{2x-3} = \left(\frac{1}{49}\right)^{x+1}$$

For exercises 24-36, solve the equation. Write the solution set with the exact values given in terms of common or natural logarithms. Also give approximate solutions to 4 decimal places.

$$4.5 \# 24$$
 $2^z = 70$

For exercises 24-36, solve the equation. Write the solution set with the exact values given in terms of common or natural logarithms. Also give approximate solutions to 4 decimal places.

$$4.5 \# 28$$
 $10^{5+8x} + 4200 = 84,000$

For exercises 42-60, solve the equation. Write the solution set with the exact values. Also give approximate solutions to 4 decimal places, if necessary.

4.5 #42
$$log_7(12-t) = log_7(t+6)$$

$$4.5 \# 46 \quad 5log_6(7w+1) = 10$$

$$4.5 \, \# 36 \qquad e^{2x} - 6e^x - 16 = 0$$

For exercises 42-60, solve the equation. Write the solution set with the exact values. Also give approximate solutions to 4 decimal places, if necessary.

$$4.5 \# 50 \log(q-6) = 3.5$$

4.5 #56
$$log_4(5x - 13) = 1 + log_4(x - 2)$$

4.5 #60
$$\ln x + \ln(x - 3) = \ln(5x - 7)$$

4.5 #58
$$log_2 x = 4 - log_2 (x - 6)$$

4.5 #66 Use the model $A = P\left(1 + \frac{r}{n}\right)^{nt}$. Barb puts aside \$10,000 in an account with an interest reinvested monthly at 2.5%. How long will it take for her to earn \$2000? Round to the nearest month.

4.6 – Modeling with Exponential and Logarithmic Functions

4.6 #14 Solve for the indicated variable.

 $N=N_0e^{-0.025t}$ for t (used in chemistry)

4.6 #24 Suppose that \$50,000 from a retirement account is invested in a large cap stock fund. After 20 yr, the value is \$194,809.67.

a. Use the model $A=Pe^{rt}$ to determine the average rate of return under continuous compounding.

4.6 #18 Solve for the indicated variable.

 $L = 10 \log \left(\frac{I}{I_0}\right)$ for I (used in medicine)

b. How long will it take the investment to reach one-quarter million dollars? Round to 1 decimal place.

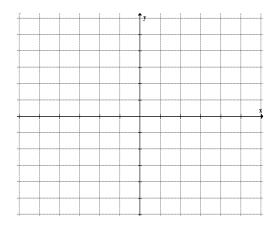
Some Chapter 4 Review Problems

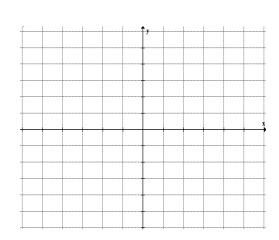
1. Solve:
$$-log_2(x-4) = 3 - log_2(x+3)$$

3. Graph:
$$h(x) = -2log_2(x+1) + 3$$

2. Graph:
$$g(x) = 3log_4(x-2) + 1$$

4. Graph
$$y = 3^{x+2} - 1$$





5. Solve:
$$3^{x+4} = 81$$

7. Solve:
$$log x - 1 = -log(x - 9)$$

6. Solve:
$$3^{x+4} = 85$$

8. Solve:
$$ln(21) = 1 + ln(x - 2)$$

- 9. For continuously compounding interest, at what interest rate should \$500 be invested so that is grows to \$750 in 8 years?
- 11. For $f(x) = \frac{7x-9}{-8x+5}$, find $f^{-1}(x)$, and the domain and range of $f^{-1}(x)$.

10. For how long should \$800 be invested at 4.3%, compounded daily, in order for it to grow to \$2000?